• 1
  • 2
  • 3
  • 4
  • 5
期刊浏览
中小学教育杂志封面

国际刊号:ISSN1001-2982

国内刊号:CN11-4299/G4

邮发代号:2-597

主管:中华人民共和国教育部

主办:中国人民大学

联系我们

投稿邮箱:zxxjyzzbjd@163.com

网址:www.zxxjycn.com

联 系 人:文老师

热门推荐
  • 暂无内容...
  • 陈应芝:浅谈数学教学与学生创新思维能力的培养

    浅谈数学教学与学生创新思维能力的培养
    ◎ 贵州省石阡县大沙坝九校 陈应芝
    创新思维是一种有创见的思维,它是人类的高级思维活动,创新思维是创新能力的核心,它的实质就是求新、求异、求变。素质教育的重点是培养学生的创新能力和实践能力。数学是一门逻辑性很强的学科,她蕴含着人类在漫长的历史长河中积累的丰富的思维科学。数学教育作为基础教育的重要组成部分,对培养学生的创新思维和创新能力具有其他学科无法替代的作用。在小学数学教学中,如何充分调动学生的积极性和主动性,使学生在掌握基础知识的同时,培养发展他们的思维能力呢?
    本人通过长期的数学教育教学实践,认为从以下几个方面为突破口,来培养学生的创新思维能力,提高教育教学质量。
    一、变讲解为思索,引导思维。数学教学本身就是一个不断分析问题和解决问题的思维过程,所以在教学中,教师一定要从学生的实际出发,这样既有助于帮助学生深刻理解所学的知识,也有利于培养他们的逻辑思维能力。例如,在讲解比的意义时,教师首先通过实例,简要说明比的意义,让学生头脑中形成一个初步的概念。然后通过3:2=3÷2=的算式,让学生认识比号,比的前项和后项以及比值等。接着教师提出:“比和分数有什么关系?”让同学们思考,通过思考不难明白:比的前项相当于分子,后项相当于分母,比值相当于分数值。经过上述活动,教师再向学生布置如下思考题:“比的后项能不能等于零?为什么?”因为同学们对比和除法的关系有了明确的认识,很自然的会想到零作除数没有意义,比的后项相当于除法中的除数,当然就不能是零的道理。这样,变教师讲授为学生思考。整个课堂中,学生在教师的引导下,时时处于思维状态中,不仅获得了知识,也受到了思维的训练。
    二、从具体到抽象,指导思维。思维是人脑对现实概括的反应,如果仅凭感知表象,只能认识事物的外部特征,不能抓住事物的本质。如果凭借思维,不仅能抓住事物的本质,还可以把握事物与事物之间的内在联系。因此,教学中在坚持直观性原则的同时,积极引导学生把具体感知与抽象思维结合起来,是发展学生思维能力很重要的一环。例如讲圆的面积公式时,课前让学生每人准备好一张圆纸片,课堂上待揭示课题后,先让学生动手,把圆对折,用小刀将圆平分成两个半圆。再分别将两个半圆分成2等份、4等份、8等份。这时,圆的面积被分成16个小扇形。然后教师让学生把两个半圆的小扇形交叉拼起,这时教师再黑板上利用教具进行演示:把圆平均分成32等份,每16份是一个半圆,两个半圆的小扇形再进行交叉拼图,形成近是长方形的图形。然后引导学生思维。同学们不难想到,把圆分割的份数越多,拼成的图型就越接近长方形。这时教师提问:拼成的长方形面积和圆的面积有什么关系?圆的面积该如何计算?
    这时,在同学们积极思考的同时,教师因势利导,继续促进他们思考:拼成的长方形的长与圆周的关系是什么?宽与半径有什么关系?此时此刻,水到渠成,同学们会很自然地说出,求圆的面积只要周长÷2×半径就可以了。最后通过教师引导,将公式化简为s=πr2,顺利的完成了教学任务。这种从直观的分析理解,由感性到理性的认识过程,促进了学生的积极思维,培养了学生发现真理和探索真理的兴趣和能力。
    三、搞好对比教学,启发思维。对比教学本身就有很大的启发性。通过对比教学可以启发学生的联想,提高他们分析问题和辨别是非的能力。对比教学的过程,也是启发学生进行思维的过程。在教学中,经常组织对比教学,也是训练学生思维的一个重要方面。例如,小学生在初学比和比例时,对这两个概念容易混淆,所以在教学中,教师除根据定义加以区别外,还应列出一个比和比例的式子让他们进行对比,找出不同点,明确比是由两个数组成,比例是由两个相等的两个比组成。比表示两个数相除的关系。再如,求比值和化简比的结果,学生也容易混淆,这就要增加对比练习,不断启发学生对比思维,加深理解比值的概念和化简的原则。
    四、精心组织练习,发展思维。应用题的教学是培养学生学生思维能力的重要途径。在教学中,经常会发现讲完一个例题后,同学们做类似例题的练习题型问题不大。若题型略有变化,就束手无策。其原因固然与学生年龄小、知识浅有关,但主要原因还在于教师缺乏对他们的思维训练。为此,教师就有针对性地组织一些可以发挥学生思维的练习题,以使他们的思维能力不断的得到发展。
    例如在讲工程问题的应用题时,应先拟一些与例题相似的练习题:“车站有一批货物,甲汽车6小时可以运完,乙汽车4小时可以运完,如两部汽车同时运,几小时可以运完?”这个题要求同学们既能正确回答,又能讲出思维过程,目的是巩固基础知识,了解掌握程度。然后,将练习题改为:“求几小时可以运完全部货物?这个练习的目的是使同学们理解工程问题。虽然把总工作量当作“1”,但要完成的工作量不一定是“1”,它是由具体情况决定的,使同学们对“工作任务÷工作效率=工作时间”有进一步的理解。接着,再把原题条件改为:“两辆车合运2小时后,完成了几分之几?还剩几分之几?使学生在练的过程中加大思维量,然后又提出:“剩下的任务由甲汽车单独运还需几小时完成?”这些由浅入深的练习题,看起来虽然高于教材要求,但因为是在原基础上进行的适当延伸,所以不仅有利于知识的融会贯通,也有利于学生思维能力的发展。
    总之,在数学教学中如何培养学生的创新能力是我们所有数学教师的重要课题。我认为,只要我们转变观念,真正把学生作为学习的主体,充分调动学生的创新思维的积极性,并切实加以引导、培养,就一定能够使他们的创新能力得到有效培养,创新人才就会在你的培养下茁壮成长。

    点击次数:33  发布日期:2013/11/7 8:00:00  【打印此页】  【关闭