• 1
  • 2
  • 3
  • 4
  • 5
期刊浏览
中小学教育杂志封面

国际刊号:ISSN1001-2982

国内刊号:CN11-4299/G4

邮发代号:2-597

主管:中华人民共和国教育部

主办:中国人民大学

联系我们

投稿邮箱:zxxjyzzbjd@163.com

网址:www.zxxjycn.com

联 系 人:文老师

热门推荐
  • 暂无内容...
  • 杜波:小学数学教学中如何渗透数学思想方法

    小学数学教学中如何渗透数学思想方法
    ◎ 贵州省安龙县龙山镇宜拉小学 杜波
    重视数学“双基”教学,是我国中小学数学教学的传统优势;但毋庸置疑,其本身也存在着诸多局限性。如何继承和发展“双基”教学,是当前数学教育研究的一个重要课题。而“帮助学生学会基本的数学思想方法”则是新一轮数学课程改革所设定的一个基本目标。中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”现用人教版、北师大版小学数学新教材都比较重视数学思想方法的教学,把基本的数学思想方法作为选择和安排教学内容的重要线索,让学生通过基础知识和基本技能的学习,懂得有条理地思考和简明清晰地表达思考过程,运用数学的思想方法分析和解决问题,以更好地理解和掌握数学内容,形成良好的思维品质,为学生后续学习奠定扎实的基础。面对新课程背景下渗透数学思想方法教学的新要求,作为新教材的实施者,下面就小学数学课堂教学中如何渗透数学思想方法,谈谈自己的一些做法与实践。
    一、在教学预设中合理确定
    渗透数学思想方法,教师应在进行教学预设时,抓住数学知识与思想方法的有效结合点,在教学目标中体现每个数学知识所渗透的数学思想方法。
    如在概念教学中,概念的引入可以渗透多例比较的方法,概念的形成可以渗透抽象概括的方法,概念的贯通可以渗透分类的方法。在解决问题的教学中,通过揭示条件与问题的联系,渗透数学解题中常用的化归、数学模型、数形结合等思想。有时某一数学知识蕴含了多种思想方法,教师可根据需要和学生的认知特点有所侧重,合理确定。例如,在整理与复习时,为了让孩子对 “运算定律及性质”整合在一起学习,就是要突出“归纳类比、数学结构”的思想方法,发展学生的直觉思维,促进学生的学习迁移,实现对“运算定律、性质”的完整认识,
    学习过程中还要用到“观察,猜想,验证”等方法。
    二、在知识形成中充分体验
    数学思想方法蕴含在数学知识之中,尤其蕴含于数学知识的形成过程中。所以,在学习每一数学知识时,尽可能提炼出蕴含其中的数学思想方法,即在数学知识产生形成过程中,让学生充分体验。
    比如我在教学“角”的知识时,先让学生在媒体上观察“巨大的激光器发送了两束激光线”,然后由学生确定一点引出两条射线画角,感知角的“静止性”定义以及角的大小与所画边的长短无关的观念。再让学生用“两条纸片和图钉”等工具进行“造角”活动,不经意之间学生发现角可以旋转,并且随着两条纸片叉开的大小角又可以随意地变化。这样“角”便定义为“一条射线绕着它的端点旋转而成的”,这就是角的“运动性”定义,体现着运动和变化的数学思想。学生在“画角、造角”活动中经历了“角”的产生、形成和发展,从中感悟的数学思想是充分与深刻的。
    数学思想方法呈现隐蔽形式。学生在经历知识形成的过程中,通过观察、实验、抽象、概括等活动体验到知识负载的方法、蕴涵的思想,那么学生所掌握的知识就是鲜活的、可迁移的,学生的数学素质才能得到质的飞跃
    三、在方法思考中加强深究
    处理数学内容要有一定的方法,但数学方法又受数学思想的制约。离开了数学思想指导的数学方法是无源之水、无本之木。因此,在数学方法的思考过程中,应深究数学的基本思想。
    新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。
    四、在问题解决中精心挖掘
    在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。
    如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵?”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程,给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。
    因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。
    五、在复习运用中及时提炼
    数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。
    从以上实践不难看出,如果把教师的教学预设看作教学渗透的前期把握,那末数学知识的形成过程、数学方法的思索过程、问题解决的发现过程以及复习运用的归纳过程就是学生形成数学思想方法的源泉。学生在学习过程中要自己去体验、探究、挖掘、提炼,从中揣摩和感受数学思想方法,形成自身的数学思考方法,提高分析问题、解决问题的能力。

    点击次数:174  发布日期:2013/9/17 8:00:00  【打印此页】  【关闭